Annex I provides an overivew of all GEAM variables as chart and frequency table.
Keywords
Descriptive statistics
A.1 Socio-demographic variables
A.1.1 Gender
df.geam |>table_frq(SDEM004)
Table A.1: Frequency table of SDEM004 - Gender
A.1.2 Sexual orienation
df.geam |>table_frq(SDEM007)
Table A.2: Frequency table of SDEM007 - Sexual orientation
A.1.3 Socioeconomic status
Socio-economic status is calculated based upon SDEM0017 and SDEM0018 on parents/legal tutor highest educational level.
Code
# create new SES variable based upon the higher value of SDEM017 vs. SDEM018df.geam <- df.geam |>mutate(SDEM017.comp =if_else(SDEM017 =="Prefer not to say"| SDEM017 =="Other"|is.na(SDEM017), -99, as.numeric(SDEM017)), SDEM018.comp =if_else(SDEM018 =="Prefer not to say"| SDEM018 =="Other"|is.na(SDEM018), -99, as.numeric(SDEM018)), higher_ses =if_else(SDEM017.comp >= SDEM018.comp, SDEM017.comp, SDEM018.comp))# create three SES groupsdf.geam <- df.geam |>mutate(ses_3g =case_when( higher_ses >0& higher_ses <=3~"Lower SES", higher_ses >3& higher_ses <=5~"Medium SES", higher_ses >5& higher_ses <=9~"Higher SES",.default =NA ))# reconvert to factordf.geam$ses <-factor(df.geam$ses_3g)
A.2 Working conditions - Work-life balance
A.2.1 Job satisfaction
Job satisfaction is measured via two variables in the GEAM, a global job satisfaction score EWCS88JobSatisfact1 and three additional items used in EWCS89JobSatisfact8 capturing career prospects, motivation, and job security.
By microaggressions we mean brief and commonplace verbal, behavioral, and environmental indignities, whether intentional or unintentional, that communicate hostile, derogatory, or negative slights and insults to the target person or group. They might be related to race or the colour of one’s skin, gender, sexual orientation, age, ethnic group, or religion.